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T
his article describes a pilot programming course 
in which high school students were introduced, 
through the visual programming language of live 
sequence charts (LSC),1 to a new paradigm termed 

scenario-based programming.2 The rationale underlying 
this course was teaching high school students a “second,” 
very different programming paradigm.3 Using LSC for this 
purpose has other advantages, such as exposing students to 
high-level programming, dealing with nondeterminism and 
concurrency, and referring to human-computer interaction 
(HCI) issues.

Here, we describe in detail a course that realizes this 
rationale and demonstrates that high school students can 
successfully learn the principles of scenario-based program-
ming and deal with advanced topics such as nondetermin-
ism and visual programming. This work also contributes to 
the discussion about guiding principles for curriculum de-
velopment by highlighting an important principle: the edu-
cational objective of a course should include more than mere 
knowledge enhancement. It should be examined and justi-
fied through its contribution to learning fundamental ideas 
and forming useful habits of mind. This article is divided 
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into two parts that are included in two consecu-
tive issues. Part 1 describes the pedagogic rationale, 
LSC, and the course structure, whereas Part 2 will 
look at an evaluation of the course.

Overall Background
Computer science (CS) education at the high 
school level has received increasing attention in 
recent years. In the US, Barack Obama called on 
young Americans to learn programming (https://
www.youtube.com/watch?v=6XvmhE1J9PY) and 
launched a $4 billion program to expand partici-
pation in CS education (https://www.whitehouse 
.gov/blog/2016/01/30/computer-science-all). Or-
ganizations such as code.org (https://code.org) and 
the Khan Academy (https://www.khanacademy 
.org/computing/computer-programming) offer 
programming courses for beginners of all ages, an 
idea that has gained public support from indus-
try leaders like Bill Gates and Mark Zuckerberg, 
and celebrities such as basketball star Chris Bosh 
(https://www.youtube.com/watch?v=dU1xS07N 
-FA). In various European countries, New Zealand, 
Israel, and elsewhere, CS education in high school 
is already relatively established.4,5

Although high school programs vary consider-
ably among countries, it’s commonly agreed among 
CS educators that high school programs, like under-
graduate ones, should teach fundamental CS ideas 
and present CS as a science (of computing), rather 
than as a technical subject that’s mainly about pro-
gramming (www.computingatschool.org.uk/data 
/uploads/internationalcomparisons-v5.pdf). This 
view of what CS education means is manifested,  
for example, in the CSTA K-12 CS standards.6 
An example of a high school curriculum that real-
ized these principles is the seminal work of Judith 
Gal-Ezer and her colleagues (hereafter denoted as 
GBHY95).3 The full program GBHY95 suggested 
includes five units of 90 hours each. The essentials 
were implemented in an Israeli CS high school pro-
gram that has been in use, with routine updates, for 
almost two decades. One of the underlying prin-
ciples of this curriculum is that students should be 
exposed to more than one programming paradigm 

(this issue, commonly referred to as the second pro-
gramming paradigm, is elaborated on later).

In this article, we describe a course that was 
successfully delivered to 19 students in a 12th-
grade CS programming class. The main objective 
of the course was to introduce students to an ad-
ditional programming paradigm, but in addition, 
by the very nature of the paradigm taught, it dealt 
with fundamental CS ideas that are central to 
LSC, such as nondeterminism, abstraction, and 
system design. The objectives of the pilot were to 
evaluate the extent to which the course achieved its 
learning goals and to better understand the various 
aspects involved in delivering it.

Theoretical Background
The following subsections present the learning 
theories underlying our pedagogic approach and 
reviews previous CS education research that relate 
to the topics on which our course focused.

Meaningful learning and fundamental ideas. The term 
meaningful learning was coined by David Ausubel,7 
who contrasted it with rote learning. Ausubel fo-
cused on the cognitive structure and claimed that 
meaningful learning occurs when new knowledge 
is significantly related to existing knowledge, yield-
ing a highly interconnected structure. This facili-
tates the retention of the existing knowledge and 
supports the learning of new information, which 
can be tied to the existing knowledge structure. 
Furthermore, the rich set of associations between 
concepts learned in different contexts leads to gen-
eralizations and allows the learned concepts to be 
retrieved and applied outside the specific context 
in which they were originally introduced. Jerome 
Bruner called this kind of generalization nonspe-
cific transfer and considered it as the ultimate goal 
of the learning process.8 Another principal com-
ponent of Bruner’s theory was organizing learning 
around fundamental ideas.

Andreas Schwill extended Bruner’s work and 
applied it to computer science education.9 He 
formulated Bruner’s notion of what makes an 
idea fundamental into a set of four criteria, each 

The rich set of associations between concepts learned in 
different contexts leads to generalizations and allows the 
learned concepts to be retrieved and applied outside the 
specific context in which they were originally introduced.
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defining an essential dimension of fundamental 
ideas: the horizontal criterion states that funda-
mental ideas appear in multiple ways and in dif-
ferent domains; the vertical criterion states that 
fundamental ideas can be taught on various levels 
of complexity; the time criterion defines funda-
mental ideas as those that can be clearly observed 
in the historical development of the discipline; and 
the sense criterion states that fundamental ideas are 
related to everyday language and thinking. Based 
on this set, Schwill developed a catalog of funda-
mental ideas of CS, grouped into a tree-like struc-
ture under three master ideas: algorithmization, 
structured dissection, and language.

The same characteristics that make ideas 
fundamental—their general nature and their ap-
plicability to many domains—are also the essence 
of Colin Corder’s notion of soft concepts,10 which, 
according to him, are what make such concepts 
difficult to teach and learn. Teaching fundamen-
tal ideas lies at the foundation of our educational 
approach; thus, promoting meaningful learning of 
such ideas was the main consideration underlying 
our pedagogy, which is mainly based on the con-
ceptual recommendations of Bruner and Ausubel.

Promoting meaningful learning. Bruner suggested ar-
ranging the curriculum in a spiral manner around 
fundamental ideas. According to this principle, 
known as the spiral curriculum, concepts should 
be revisited in different contexts and on different 
levels of complexity throughout the curriculum. 
This was based on his belief that “any subject can 
be taught effectively in some intellectually honest 
form to any child at any stage of development.”8 
The fact that fundamental ideas appear in differ-
ent contexts and levels of complexity reflects their 
horizontal and vertical nature, as formalized by 
Schwill.

Ausubel recommended the introduction of 
advance relevant organizers to which the new 
knowledge could be connected. While Ausubel pre-
sented this idea in the context of designing a lesson 
or a learning unit, it’s also relevant to the design of  
a more longitudinal learning experience, such as 
a curriculum. Each time a concept is revisited, 
new knowledge, based on previous knowledge, is 

created. Emphasizing common core, that is, the 
fundamental idea that connects the previous and 
the current learning experiences, leads to general-
ization, which in turn supports nonspecific trans-
fer. Thus, interpreting Burner’s ideas through 
Ausubel’s cognitive approach implies that the 
occurrence of the ideas at the early stages of the 
spiral produces organizers that help deal with more 
advanced occurrences of these ideas at later stages. 
It’s thus important to start introducing these ideas 
early on, as this can affect the ultimate level of 
dealing with the concept.

The idea that learning should be arranged in a 
gradual way that matches the level of the learners 
and their needs is also the essence of the scaffold-
ing theory of learning,11 which is based on Bruner’s 
ideas and on Lev Vygotsky’s concept of the zone of 
proximal development.12

Another strategy for achieving meaning-
ful learning is by making it active. The advan-
tages of learning by doing have been emphasized 
by various authors, and it’s also the essence of 
Idit Harel and Seymour Papert’s construction-
ism.13 In addition to the cognitive aspects, these 
two learning approaches—learning by doing and 
constructionism—emphasize the role of moti-
vation and engagement in the learning process. 
Project-based learning14 is another highly effec-
tive approach that emphasizes learning by doing 
but also highlights the role of collaboration and of 
solving real-world problems as activities that sup-
port the learning process.

A second programming paradigm. GBHY95 suggest-
ed that students should be introduced, besides the 
main language that they learn (currently, in Israel, 
it’s Java or C#), to “another language, of radically 
different nature, that suggests alternative ways of 
algorithmic thinking. This emphasizes the fact that 
algorithmics is the central subject of study.”3 These 
two sentences present a clear rationale that’s in line 
with Bruner’s philosophy of teaching fundamental 
ideas in a spiral manner: programming is mainly a 
vehicle for dealing with the fundamental idea of an 
algorithm; students should be exposed to various 
manifestations of the concept, with the purpose of 
enriching their understanding of it.

These two learning approaches—learning by doing and 
constructionism—emphasize the role of motivation and 
engagement in the learning process.
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Following this rationale, GBHY95’s high 
school program devoted a 90-hour unit (out of five 
units of similar length) to the second paradigm; 
teachers could choose from a few optional courses,  
each focusing on a different paradigm. One of 
these was logic programming with Prolog. The ra-
tionale behind this course was exposing students to 
a high-level, declarative programming style. Sev-
eral studies showed that learning Prolog supports 
developing abstraction skills, such as using black 
boxes.15 However, studies by Marian Petre16 and 
Josie Taylor17 indicated difficulties related to the 
lack of a clear operational model in Prolog. LSC is 
also a language that’s radically different from con-
ventional languages used in introductory courses, 
maybe even more so than Prolog. Besides being de-
clarative and high level, it’s also a visual language, 
and its development environment implements a 
novel approach for concrete interface program-
ming (the play-in method). This makes LSC a very 
interesting choice for the second paradigm. Our 
findings in other work18 suggested that the rela-
tively clear and accessible underlying operational 
model of LSC makes it easier for students to cope 
with its declarative nature.

Nondeterminism (ND). This topic usually isn’t 
included in high school programs,19 but as a fun-
damental idea in CS,20 we believe ND should be 
included, in line with Bruner’s spiral approach for 
teaching fundamental ideas. ND is also one of 
the essential characteristics of concurrency, which 
is another fundamental principle in CS. In the 
GBHY95 high school program,3 ND was covered 
in the computational models course, which was 
one of the options for the theory module.21 In that 
course, ND was introduced through nondeter-
ministic finite automata. However, several studies 
have indicated that the kind of ND that appears 
in automata theory is hard to teach and learn.22 As 
LSC is a nondeterministic programming language, 
teaching it inherently includes teaching ND, but of 
the kind that appears in nondeterministic and con-
current programming. In one work,19 this kind of 
ND was termed operative ND. At the core of this 

type of ND lies the idea of true don’t care, which 
means that there’s a priori no preference, and all 
possible computations are equally good. Thus, 
operative ND has universal semantics, as opposed 
to the existential semantics typically presented to 
students in courses that deal with automata theory. 
The results reported in the previous work showed 
that after learning LSC, students can reach a signif-
icant understanding of this kind of ND. A possible 
implication of these findings, yet to be investigated, 
is that operative ND should be introduced first, and 
that it might facilitate the understanding of nonde-
terministic automata and Turing machines.

System design and abstract thinking. Abstraction is a 
very fundamental CS idea.23 Introducing students 
to system design and developing abstract thinking 
skills are primary objectives of the advanced pro-
gramming module of the GBHY95 high school 
program. Because LSC is a high-level, declarative 
programming language, its learning naturally sup-
plies opportunities for dealing with system design 
and abstraction. As we reported elsewhere,18 novice 
and graduate students who learned LSC presented 
patterns of desirable high-level thinking. Within 
the group of graduate students, the use of abstrac-
tion with LSC was compared to difficulties that 
these students had when solving the same task us-
ing object-oriented programming languages.

Other issues. Working with LSC raises other im-
portant software engineering issues that typi-
cally aren’t included in the Israeli high school 
curriculum, which mainly emphasizes algorithmic 
thinking, or in other K–12 CS curricula in other 
countries.24,25 One of these issues is usability and 
HCI. The IEEE/ACM Joint Task Force on Com-
puting Curricula (CC2013; http://ai.stanford.edu 
/users/sahami/CS2013/final-draft/CS2013-Final-v0.9 
-prerelease.pdf) suggests devoting eight core hours 
(and elective units) to HCI. While CC2013 refers 
to undergraduates, this reference is an indication 
that HCI is a central aspect of software engineer-
ing. Following the general concept of the spiral 
curriculum, we believe that fundamental issues 

Following the general concept of the spiral curriculum, we 
believe that fundamental issues should also be considered 
at earlier stages, in a way that prepares the ground for 
dealing with them in the future in a more advanced way.
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should also be considered at earlier stages, in a way 
that prepares the ground for dealing with them 
in the future in a more advanced way. According 
to findings we reported elsewhere,26 graduate stu-
dents’ attention to HCI issues was higher when 
working with LSC, compared to their attention to 
these issues when solving similar tasks in object-
oriented programming languages.

Because LSC might raise students’ attention 
to HCI issues, exposure to it at early stages can 
serve as the starting point for a spiral teaching of 
this subject, setting the ground for future, more 
advanced learning of the subject. Other issues that 
naturally come up when working with LSC are re-
quirements engineering and verification. This is be-
cause LSC is basically a specification language that 
aims to describe the behavior of reactive systems,27 
which are systems in which the main complication 
stems from the intricate interactions among users, 
environments, and system components. Though 
these issues weren’t the focus of our course, we 
did use this opportunity to briefly discuss them as 
well. Again, this can serve as organizers for future 
learning and is in line with a broad introduction 
of the CS discipline, which is a central goal of the 
GBHY95 high school program.

Course Structure and Setting
To achieve meaningful learning, our course fol-
lowed two pedagogic principles: the zipper prin-
ciple3 and project-based learning.14 The former 
is a pedagogical method that combines ideas of 
scaffolding and learning by doing. It means that 
theoretical lectures are interwoven with hands-on 
experience in the lab, in which the students exercise 
the learned concepts on a small scale and in a con-
trolled setting. This supports a gradual, bottom-up 
learning of language constructs and the execution 
model, making it possible to familiarize students 
with the development environment. The first half of 
the course was arranged according to this principle.

In the second half of the course, which was 
project-based, students chose, designed, and imple-
mented a project in LSC. Project-based learning 
is basically a top-down learning approach. Stu-
dents start from what they want to build, and use 
their knowledge (and if needed, acquire additional 
knowledge) to realize it. Among other things, this 
requires that the learners synthesize their knowl-
edge and provides it with a real-world context. As 
mentioned earlier, the project-based approach em-
phasizes collaborative work, and studies show that 
it increases motivation.14

In the GBHY95 high school program, the sec-
ond paradigm unit is planned for 90 hours. Due 
to external constraints, our course was 45 hours 
long. A 90-hour course would allow for deeper 
treatment of concepts that weren’t sufficiently dis-
cussed, would include concepts that we omitted for 
lack of time (such as asynchronous execution), and 
would allow us to devote more time to the projects. 
Yet, as our research shows, even a 45-hour course 
enabled students to achieve (project-based) mean-
ingful learning of the principles of scenario-based 
programming and of advanced topics, such as ND.

Our course was given to high school students, 
but we believe that the results are also applicable 
to achieving similar goals in the context of un-
dergraduates. An undergraduate course can delve 
deeper and connect the learned subjects to ad-
vanced topics such as synthesis.

Live Sequence Charts and  
Scenario-Based Programming
LSC is a visual programming language for reactive 
system development that was originally introduced 
by Damm and Harel.1 It is supported by the Play-
Engine2 development environment, which we used 
in the course, and the later tool, PlayGo,28 which is 
a much more mature environment. PlayGo is one 
result of an extensive effort toward making LSC 
and behavioral programming publicly available 
and accessible. It can be downloaded for free, to-
gether with tutorials, demos, and a language refer-
ence, at http://wiki.weizmann.ac.il/playgo.

Scenario-Based Programming
LSC introduces a new paradigm called scenario-
based programming, the main abstraction being a 
scenario that describes a series of actions consti-
tuting a certain functionality of the system and 
that can include possible, necessary, or forbidden 
actions. For example, cash withdrawal is a basic 
functionality of an ATM, so a scenario that de-
scribes system behavior in cash withdrawal will de-
tail interactions between the person withdrawing 
money and the system, and between internal parts 
of the system. A scenario is implemented by a live 
sequence chart (hereafter we just use chart). Figure 
1 shows an example of a chart for cruise control in 
an automobile.

Syntactically, a chart is composed of two parts: 
the prechart and the main chart. The prechart  
is the upper dashed line hexagon in Figure 1; it’s 
the chart’s activation condition. Once the chart 
is activated, execution enters the main chart; this 
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is the lower rectangle in Figure 1, which contains 
execution instructions. The vertical lines repre-
sent objects, and the horizontal arrows represent 
interactions between them. Time flows from top 
to bottom. Execution rules define how one chart 
is activated and executed, and how multiple charts 
are synchronized to run simultaneously. The en-
gine’s ability to interweave at runtime charts that 
implement different aspects of the system into a 
single flow enables (and encourages) an incremen-
tal development process, in which the system is 
built by heaping separate scenarios. In addition to 
LSC, scenario-based programming is also available 
as an extension to Java, C++, Erlang, and Google’s 
Blockly. The general approach has been called  
behavioral programming.29

The Play-In Method
LSC is supplemented with a method for build-
ing the scenario-based specification over a real or 
mockup GUI of the system via the play-in method, 
which is implemented in the Play-Engine/PlayGo. 
With play-in, the user specifies scenarios in a way 
that’s close to how real interaction with the system 
occurs. Figure 2 shows a snapshot of applying play-
in on a toy GUI of a cellular phone. The chart on 
the left implements a scenario that describes what 
the display and the speaker should do once the 
user shuts the cellphone cover. It was programmed 
into the system by actually interacting with the 
GUI, that is, by playing with its components and 
through this inserting the scenario’s logic. (Insert-
ing visual notations can also be done on the chart 
and not only through the GUI. This is to support 
programming of elements that don’t have a GUI 
representation or that have operations that are less 
convenient to do through the GUI.)

The Play-Out Method
LSC has an operational semantics that’s imple-
mented by the play-out method.30 which is also 
included in the Play-Engine/PlayGo tools. Play-
out makes the specification directly executable/ 
simulatable, thus enabling the use of LSC as a 
high-level programming language (other than 
merely as a specification language).

The Course
The course that we describe here was given to a 
standard class of 19 (10 girls, 9 boys) 12th-grade 
high school students majoring in CS. Students’ 
previous experience included two introductory CS 
courses given in Java (total of 180 hours), one in 

the 10th grade and the other in the 11th grade; a 
course on computer organization and assembly 
language (90 hours), given in the 11th grade; and 
a shortened version (45 hours instead of 90) of the 
Computational Models course, which was given in 
the first half of the 12th grade. This latter course 
dealt mainly with deterministic finite automata 
and didn’t include the concept of ND (we intended 
to introduce it through LSC). Our course included 
45 hours and replaced the second half of the Com-
putational Models course, meaning it was part of 
the fifth unit. In parallel with the fifth unit, the 
students learned software design (the fourth unit), 
which mainly dealt with (relatively) advanced soft-
ware issues such as data structures, recursion, API, 
and performance, presented in an object-based 
approach.

Figure 1. A live sequence chart. This simple scenario is taken from an 
implementation of cruise control. If and when the user presses (clicks) 
the brake pedal, the cruise unit releases control of the accelerator and the 
brake, and then turns itself off.
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Figure 2. The play-in method. The chart on the left implements a scenario 
that describes what the display and the speaker should do once the user 
shuts the cellphone cover.
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Our course was developed and executed as a 
pilot course on scenario-based programming with 
LSC, under the auspices of the Israeli Ministry of 
Education. It was mandatory for students in this 
class, and its final grade was based on a matricu-
lation exam that included a section on LSC and 
scenario-based programming, together with sec-
tions that referred to other CS units that students 
learned during that year (computational models 
and software design).

Main Objectives and Teaching Method
The main objective of the course was teaching 
scenario-based programming as a second paradigm 
via LSC. The course was divided into two parts. 
The main purpose of the first was to cover basic 
concepts and the relevant domains that the course 
touched on (reactive systems, the software devel-
opment cycle, and so on). The teaching method 
followed the zipper principle, meaning that theo-
retical lectures were interwoven with hands-on  
exercise in the lab. The second part was project-
based. The students were divided into small groups, 
and each group chose a project and programmed 
it in LSC and implemented it on the Play-Engine. 
During this part, we embedded some pauses in 
which new, more advanced concepts were intro-
duced to the whole class.

Usually, the trigger for pausing the work to 
discuss a topic was a real need that came from one 
or more groups. This approach takes advantage 
of a main characteristic of project-based learning: 
students have a very strong motivation to learn the 
concept, as it addresses a genuine need. This is true 
not only for the specific group from which that 
need arose but also for the other groups. Because 
the other students are more or less at the same stage 
of learning, they naturally feel that this informa-
tion is very relevant to them. Typically, immediately 
after the topic is discussed, all the groups discuss it 
in the context of their project.

The concepts taught this way weren’t always 
totally new. For example, the concept of forbidden 
scenarios was very briefly mentioned in one of the 
lectures, with the purpose of delving into it during 
later stages. One group project dealt with safety re-
quirements (for an elevator), which are commonly 
about forbidding dangerous scenarios, and recalled 
that LSC has such syntax. This opportunity was 
used to discuss in more depth the conceptual is-
sue of forbidding a scenario, and the native support 
this software concept has in LSC. This illustrates 
the pedagogic effectiveness of a teaching method 

that involves organizers given in advance, revisited 
in a spiral manner in the context of project-based 
learning.

Course Structure and Projects
The course included 15 lessons of three hours each. 
Table 1 presents the content of each lesson.

The projects were carried out in five groups 
of three to four students each. Each group was re-
quired to choose a project of reasonable complex-
ity and to implement it in LSC. We devoted to the 
project 15 hours in class, and the students did some 
more work at home (the homework that was given 
required around one more weekly hour, but some 
of the groups did more work than we required).

Choosing the projects. It was important for us that 
the students choose a system by themselves, to 
make them more engaged (indeed, in the post-
interviews, students mentioned this as a motivat-
ing factor). At this point in the course, the students 
had a clear enough idea of what they were able to 
do with LSC. Students’ projects included modeling 
an elevator, a coffee machine, an ATM, and a cell-
phone, and developing a memory game (Simon).

The work process. After the students chose their 
projects, we guided them to work according to 
the following stages: define a set of requirements, 
implement them, verify that the implementation 
meets the requirements by simulating it, and de-
cide on the next steps accordingly (either fix the 
implementation or start a new round). The ratio-
nale that underlies this process is of incremental 
development, which also underlies recent software 
engineering methodologies such as agile program-
ming. The crux is that LSC naturally supports in-
cremental development, as it lets you build a system 
by adding separate scenarios that are combined by 
the underlying engine into a single program.

Implementation. Since the final exam had to be 
pen and paper, it was important that students also 
practice drawing the charts by hand. Thus, they 
were required to implement the project in the Play- 
Engine but also to submit a handwritten version.

Submissions. Out of five groups, four submitted 
their projects with quality that varied from satis-
factory to very good (especially if we consider the 
limited time, 15 hours in total). One group didn’t 
submit its project; this group consisted of four stu-
dents who showed low attendance. According to 
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the teacher, this was typical behavior of these stu-
dents and related to problems not connected to our 
course.

Assessment
The purpose of the assessment was to evaluate 
students’ understanding of LSC. It served two 
very different purposes: grading the students, as 
required in every high school course, and evaluat-
ing the course, to examine whether its goals were 
achieved. Here, we deal with the former; the lat-
ter is elaborated on in Part 2. Grading was based 
on internal midterm and final exams, and on a 
matriculation exam that included a part written 
especially for this class. Because the matriculation 
exam in the context of which the course was given 
(the fifth unit) is carried out on paper, we built 

internal exams in the same form. Thus, and as 
typically happens, the assessment method deter-
mined, in a sort of reverse fashion, many aspects 
of the course. First, we had to give considerable 
weight during class to actually drawing the charts 
by hand. While this might be a nonissue in tex-
tual languages, it becomes an issue when teaching 
visual languages that have rich graphical nota-
tions. For example, some students have difficul-
ties making accurate drawings; drawing can be 
time-consuming, especially if different colors are 
used, or if mistakes are made and the chart needs 
to be redrawn. To overcome this, we developed 
with the students a sort of a relaxed version of the 
visual language. Fortunately, the LSC notations 
that use colors have other identifying marks. For 
example, LSC includes conditions, which come in 

Table 1. Course structure.

Lesson Subject Hours Concepts Details

1 Introduction 3 Visual languages, reactive 
systems, static vs. dynamic 
behavior

Rules system as a way for describing 
legal behaviors; visual representations 
and formalisms (for example, London’s 
Underground map); reactive systems and the 
difficulties in modeling dynamic behavior  
(vs. modeling static relationships)

2 Introduction to LSC and scenario-
based programming

3 LSC basics: pre-chart/main 
chart, play-in/out, lifelines, 
messages

Introduction to LSC and the Play-Engine; 
exercise: students program a simple scenario 
using play-in and run it using play-out

3 Execution engine, and 
simultaneous execution of 
multiple scenarios

3 Play-out, monitored vs. executed 
events, concurrent execution

Theoretical explanation and demonstration of 
simultaneous execution, followed by practical 
experience in the lab

4 System specification and the 
system model

3 The software development cycle, 
specification, requirements 

Using requirements to specify a simple cellphone; 
implementing the requirements as LSCs

5 Partial order 3 Partial order, synchronization, 
unification, nondeterminism

Different orders within a chart and between 
charts; unification rules, synchronization 
of several charts; using unification rules to 
synchronize LSCs

6 Conditions and assertions 3 Hot and cold conditions Conditional execution, assertion vs. graceful 
abort

7 Small project 3 Variables, loops, subcharts Pairs work in the lab; build a small system from 
a set of requirements to introduce students to 
additional constructs such as loops, variables, 
and subcharts

8 Symbolic elements 3 Symbolic elements, bindings, 
existential vs. universal semantics 

Using symbolic elements to define general 
behavior

9 Midterm exam 3

10-14 Final projects 15 Forbidden elements and scenarios

Exams Assessment 6 Final exam, matriculation exam
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two flavors: cold and hot. Cold conditions are de-
noted by blue dashed lines, while hot ones use red 
solid lines, so they can be distinguished even in 
black and white.

During the exams, students were required to 
create, modify, and comprehend LSC systems. 
For example, one of the exam questions dealt with 
the specification and implementation of a cell-
phone. The question included several charts, each 
implementing a scenario that captures a system 
requirement, and students had to answer various 
questions regarding the execution of these charts, 
which involved, among other things, concur-
rency and ND; to modify one of the charts to fix 
a bug; and given a new requirement, add a chart 
implementing it (https://weizmann.box.com 
/LSCsExamQuestion).

Table 2 presents average grade, standard devia-
tion, and number of participants for each test.

The rationale that guided the design of the ex-
ams was to include questions that measure differ-
ent levels of understanding, as defined by Bloom’s 
taxonomy (in its revised form31). However, we ad-
opted a more relaxed interpretation of the taxono-
my, and instead of using six categories, we grouped 
the categories into three metacategories: one that 
includes categories 1 and 2 (Remembering and 
Understanding), one that includes categories 3 and 
4 (Applying and Analyzing), and one that refers to 
categories 5 and 6 (Evaluating and Creating). The 
rationale is that Bloom’s categories can overlap, 
and the classification of operations into categories 
can be ambiguous.32

Concentrating on three metacategories allows 
us to consider the categories in a somewhat broader 
form, which makes the classification less ambigu-
ous. Table 3 describes, per metacategory and exam, 
the number of questions that were included and 
the average grade for these questions.

The results of the pilot course indicate that high 
school students can reach a significant under-

standing of LSC, and through working with the 
language, deal with high-level programming and 
nondeterminism. This is further discussed in Part 2 
of this article, which will appear in the next issue. 
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