
SECTION TITLE
Editors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

EDUCATION
Editors: Rubin Landau, rubin@physics.oregonstate.edu | Scott Lathrop, lathrop@illinois.edu

58	 Computing in Science & Engineering	 1521-9615/17/$33.00 © 2017 IEEE	 Copublished by the IEEE CS and the AIP� September/October 2017

Teaching Scenario-Based Programming:
An Additional Paradigm for the High School
Computer Science Curriculum, Part 1

Giora Alexandron and Michal Armoni | Weizmann Institute of Science
Michal Gordon | Holon Institute of Technology
David Harel | Weizmann Institute of Science

T
his article describes a pilot programming course
in which high school students were introduced,
through the visual programming language of live
sequence charts (LSC),1 to a new paradigm termed

scenario-based programming.2 The rationale underlying
this course was teaching high school students a “second,”
very different programming paradigm.3 Using LSC for this
purpose has other advantages, such as exposing students to
high-level programming, dealing with nondeterminism and
concurrency, and referring to human-computer interaction
(HCI) issues.

Here, we describe in detail a course that realizes this
rationale and demonstrates that high school students can
successfully learn the principles of scenario-based program-
ming and deal with advanced topics such as nondetermin-
ism and visual programming. This work also contributes to
the discussion about guiding principles for curriculum de-
velopment by highlighting an important principle: the edu-
cational objective of a course should include more than mere
knowledge enhancement. It should be examined and justi-
fied through its contribution to learning fundamental ideas
and forming useful habits of mind. This article is divided

www.computer.org/cise			 	� 59

into two parts that are included in two consecu-
tive issues. Part 1 describes the pedagogic rationale,
LSC, and the course structure, whereas Part 2 will
look at an evaluation of the course.

Overall Background
Computer science (CS) education at the high
school level has received increasing attention in
recent years. In the US, Barack Obama called on
young Americans to learn programming (https://
www.youtube.com/watch?v=6XvmhE1J9PY) and
launched a $4 billion program to expand partici-
pation in CS education (https://www.whitehouse
.gov/blog/2016/01/30/computer-science-all). Or-
ganizations such as code.org (https://code.org) and
the Khan Academy (https://www.khanacademy
.org/computing/computer-programming) offer
programming courses for beginners of all ages, an
idea that has gained public support from indus-
try leaders like Bill Gates and Mark Zuckerberg,
and celebrities such as basketball star Chris Bosh
(https://www.youtube.com/watch?v=dU1xS07N
-FA). In various European countries, New Zealand,
Israel, and elsewhere, CS education in high school
is already relatively established.4,5

Although high school programs vary consider-
ably among countries, it’s commonly agreed among
CS educators that high school programs, like under-
graduate ones, should teach fundamental CS ideas
and present CS as a science (of computing), rather
than as a technical subject that’s mainly about pro-
gramming (www.computingatschool.org.uk/data
/uploads/internationalcomparisons-v5.pdf). This
view of what CS education means is manifested,
for example, in the CSTA K-12 CS standards.6
An example of a high school curriculum that real-
ized these principles is the seminal work of Judith
Gal-Ezer and her colleagues (hereafter denoted as
GBHY95).3 The full program GBHY95 suggested
includes five units of 90 hours each. The essentials
were implemented in an Israeli CS high school pro-
gram that has been in use, with routine updates, for
almost two decades. One of the underlying prin-
ciples of this curriculum is that students should be
exposed to more than one programming paradigm

(this issue, commonly referred to as the second pro-
gramming paradigm, is elaborated on later).

In this article, we describe a course that was
successfully delivered to 19 students in a 12th-
grade CS programming class. The main objective
of the course was to introduce students to an ad-
ditional programming paradigm, but in addition,
by the very nature of the paradigm taught, it dealt
with fundamental CS ideas that are central to
LSC, such as nondeterminism, abstraction, and
system design. The objectives of the pilot were to
evaluate the extent to which the course achieved its
learning goals and to better understand the various
aspects involved in delivering it.

Theoretical Background
The following subsections present the learning
theories underlying our pedagogic approach and
reviews previous CS education research that relate
to the topics on which our course focused.

Meaningful learning and fundamental ideas. The term
meaningful learning was coined by David Ausubel,7
who contrasted it with rote learning. Ausubel fo-
cused on the cognitive structure and claimed that
meaningful learning occurs when new knowledge
is significantly related to existing knowledge, yield-
ing a highly interconnected structure. This facili-
tates the retention of the existing knowledge and
supports the learning of new information, which
can be tied to the existing knowledge structure.
Furthermore, the rich set of associations between
concepts learned in different contexts leads to gen-
eralizations and allows the learned concepts to be
retrieved and applied outside the specific context
in which they were originally introduced. Jerome
Bruner called this kind of generalization nonspe-
cific transfer and considered it as the ultimate goal
of the learning process.8 Another principal com-
ponent of Bruner’s theory was organizing learning
around fundamental ideas.

Andreas Schwill extended Bruner’s work and
applied it to computer science education.9 He
formulated Bruner’s notion of what makes an
idea fundamental into a set of four criteria, each

The rich set of associations between concepts learned in
different contexts leads to generalizations and allows the
learned concepts to be retrieved and applied outside the
specific context in which they were originally introduced.

EDUCATION

60	 � September/October 2017

defining an essential dimension of fundamental
ideas: the horizontal criterion states that funda-
mental ideas appear in multiple ways and in dif-
ferent domains; the vertical criterion states that
fundamental ideas can be taught on various levels
of complexity; the time criterion defines funda-
mental ideas as those that can be clearly observed
in the historical development of the discipline; and
the sense criterion states that fundamental ideas are
related to everyday language and thinking. Based
on this set, Schwill developed a catalog of funda-
mental ideas of CS, grouped into a tree-like struc-
ture under three master ideas: algorithmization,
structured dissection, and language.

The same characteristics that make ideas
fundamental—their general nature and their ap-
plicability to many domains—are also the essence
of Colin Corder’s notion of soft concepts,10 which,
according to him, are what make such concepts
difficult to teach and learn. Teaching fundamen-
tal ideas lies at the foundation of our educational
approach; thus, promoting meaningful learning of
such ideas was the main consideration underlying
our pedagogy, which is mainly based on the con-
ceptual recommendations of Bruner and Ausubel.

Promoting meaningful learning. Bruner suggested ar-
ranging the curriculum in a spiral manner around
fundamental ideas. According to this principle,
known as the spiral curriculum, concepts should
be revisited in different contexts and on different
levels of complexity throughout the curriculum.
This was based on his belief that “any subject can
be taught effectively in some intellectually honest
form to any child at any stage of development.”8
The fact that fundamental ideas appear in differ-
ent contexts and levels of complexity reflects their
horizontal and vertical nature, as formalized by
Schwill.

Ausubel recommended the introduction of
advance relevant organizers to which the new
knowledge could be connected. While Ausubel pre-
sented this idea in the context of designing a lesson
or a learning unit, it’s also relevant to the design of
a more longitudinal learning experience, such as
a curriculum. Each time a concept is revisited,
new knowledge, based on previous knowledge, is

created. Emphasizing common core, that is, the
fundamental idea that connects the previous and
the current learning experiences, leads to general-
ization, which in turn supports nonspecific trans-
fer. Thus, interpreting Burner’s ideas through
Ausubel’s cognitive approach implies that the
occurrence of the ideas at the early stages of the
spiral produces organizers that help deal with more
advanced occurrences of these ideas at later stages.
It’s thus important to start introducing these ideas
early on, as this can affect the ultimate level of
dealing with the concept.

The idea that learning should be arranged in a
gradual way that matches the level of the learners
and their needs is also the essence of the scaffold-
ing theory of learning,11 which is based on Bruner’s
ideas and on Lev Vygotsky’s concept of the zone of
proximal development.12

Another strategy for achieving meaning-
ful learning is by making it active. The advan-
tages of learning by doing have been emphasized
by various authors, and it’s also the essence of
Idit Harel and Seymour Papert’s construction-
ism.13 In addition to the cognitive aspects, these
two learning approaches—learning by doing and
constructionism—emphasize the role of moti-
vation and engagement in the learning process.
Project-based learning14 is another highly effec-
tive approach that emphasizes learning by doing
but also highlights the role of collaboration and of
solving real-world problems as activities that sup-
port the learning process.

A second programming paradigm. GBHY95 suggest-
ed that students should be introduced, besides the
main language that they learn (currently, in Israel,
it’s Java or C#), to “another language, of radically
different nature, that suggests alternative ways of
algorithmic thinking. This emphasizes the fact that
algorithmics is the central subject of study.”3 These
two sentences present a clear rationale that’s in line
with Bruner’s philosophy of teaching fundamental
ideas in a spiral manner: programming is mainly a
vehicle for dealing with the fundamental idea of an
algorithm; students should be exposed to various
manifestations of the concept, with the purpose of
enriching their understanding of it.

These two learning approaches—learning by doing and
constructionism—emphasize the role of motivation and
engagement in the learning process.

www.computer.org/cise			 	� 61

Following this rationale, GBHY95’s high
school program devoted a 90-hour unit (out of five
units of similar length) to the second paradigm;
teachers could choose from a few optional courses,
each focusing on a different paradigm. One of
these was logic programming with Prolog. The ra-
tionale behind this course was exposing students to
a high-level, declarative programming style. Sev-
eral studies showed that learning Prolog supports
developing abstraction skills, such as using black
boxes.15 However, studies by Marian Petre16 and
Josie Taylor17 indicated difficulties related to the
lack of a clear operational model in Prolog. LSC is
also a language that’s radically different from con-
ventional languages used in introductory courses,
maybe even more so than Prolog. Besides being de-
clarative and high level, it’s also a visual language,
and its development environment implements a
novel approach for concrete interface program-
ming (the play-in method). This makes LSC a very
interesting choice for the second paradigm. Our
findings in other work18 suggested that the rela-
tively clear and accessible underlying operational
model of LSC makes it easier for students to cope
with its declarative nature.

Nondeterminism (ND). This topic usually isn’t
included in high school programs,19 but as a fun-
damental idea in CS,20 we believe ND should be
included, in line with Bruner’s spiral approach for
teaching fundamental ideas. ND is also one of
the essential characteristics of concurrency, which
is another fundamental principle in CS. In the
GBHY95 high school program,3 ND was covered
in the computational models course, which was
one of the options for the theory module.21 In that
course, ND was introduced through nondeter-
ministic finite automata. However, several studies
have indicated that the kind of ND that appears
in automata theory is hard to teach and learn.22 As
LSC is a nondeterministic programming language,
teaching it inherently includes teaching ND, but of
the kind that appears in nondeterministic and con-
current programming. In one work,19 this kind of
ND was termed operative ND. At the core of this

type of ND lies the idea of true don’t care, which
means that there’s a priori no preference, and all
possible computations are equally good. Thus,
operative ND has universal semantics, as opposed
to the existential semantics typically presented to
students in courses that deal with automata theory.
The results reported in the previous work showed
that after learning LSC, students can reach a signif-
icant understanding of this kind of ND. A possible
implication of these findings, yet to be investigated,
is that operative ND should be introduced first, and
that it might facilitate the understanding of nonde-
terministic automata and Turing machines.

System design and abstract thinking. Abstraction is a
very fundamental CS idea.23 Introducing students
to system design and developing abstract thinking
skills are primary objectives of the advanced pro-
gramming module of the GBHY95 high school
program. Because LSC is a high-level, declarative
programming language, its learning naturally sup-
plies opportunities for dealing with system design
and abstraction. As we reported elsewhere,18 novice
and graduate students who learned LSC presented
patterns of desirable high-level thinking. Within
the group of graduate students, the use of abstrac-
tion with LSC was compared to difficulties that
these students had when solving the same task us-
ing object-oriented programming languages.

Other issues. Working with LSC raises other im-
portant software engineering issues that typi-
cally aren’t included in the Israeli high school
curriculum, which mainly emphasizes algorithmic
thinking, or in other K–12 CS curricula in other
countries.24,25 One of these issues is usability and
HCI. The IEEE/ACM Joint Task Force on Com-
puting Curricula (CC2013; http://ai.stanford.edu
/users/sahami/CS2013/final-draft/CS2013-Final-v0.9
-prerelease.pdf) suggests devoting eight core hours
(and elective units) to HCI. While CC2013 refers
to undergraduates, this reference is an indication
that HCI is a central aspect of software engineer-
ing. Following the general concept of the spiral
curriculum, we believe that fundamental issues

Following the general concept of the spiral curriculum, we
believe that fundamental issues should also be considered
at earlier stages, in a way that prepares the ground for
dealing with them in the future in a more advanced way.

EDUCATION

62	 � September/October 2017

should also be considered at earlier stages, in a way
that prepares the ground for dealing with them
in the future in a more advanced way. According
to findings we reported elsewhere,26 graduate stu-
dents’ attention to HCI issues was higher when
working with LSC, compared to their attention to
these issues when solving similar tasks in object-
oriented programming languages.

Because LSC might raise students’ attention
to HCI issues, exposure to it at early stages can
serve as the starting point for a spiral teaching of
this subject, setting the ground for future, more
advanced learning of the subject. Other issues that
naturally come up when working with LSC are re-
quirements engineering and verification. This is be-
cause LSC is basically a specification language that
aims to describe the behavior of reactive systems,27
which are systems in which the main complication
stems from the intricate interactions among users,
environments, and system components. Though
these issues weren’t the focus of our course, we
did use this opportunity to briefly discuss them as
well. Again, this can serve as organizers for future
learning and is in line with a broad introduction
of the CS discipline, which is a central goal of the
GBHY95 high school program.

Course Structure and Setting
To achieve meaningful learning, our course fol-
lowed two pedagogic principles: the zipper prin-
ciple3 and project-based learning.14 The former
is a pedagogical method that combines ideas of
scaffolding and learning by doing. It means that
theoretical lectures are interwoven with hands-on
experience in the lab, in which the students exercise
the learned concepts on a small scale and in a con-
trolled setting. This supports a gradual, bottom-up
learning of language constructs and the execution
model, making it possible to familiarize students
with the development environment. The first half of
the course was arranged according to this principle.

In the second half of the course, which was
project-based, students chose, designed, and imple-
mented a project in LSC. Project-based learning
is basically a top-down learning approach. Stu-
dents start from what they want to build, and use
their knowledge (and if needed, acquire additional
knowledge) to realize it. Among other things, this
requires that the learners synthesize their knowl-
edge and provides it with a real-world context. As
mentioned earlier, the project-based approach em-
phasizes collaborative work, and studies show that
it increases motivation.14

In the GBHY95 high school program, the sec-
ond paradigm unit is planned for 90 hours. Due
to external constraints, our course was 45 hours
long. A 90-hour course would allow for deeper
treatment of concepts that weren’t sufficiently dis-
cussed, would include concepts that we omitted for
lack of time (such as asynchronous execution), and
would allow us to devote more time to the projects.
Yet, as our research shows, even a 45-hour course
enabled students to achieve (project-based) mean-
ingful learning of the principles of scenario-based
programming and of advanced topics, such as ND.

Our course was given to high school students,
but we believe that the results are also applicable
to achieving similar goals in the context of un-
dergraduates. An undergraduate course can delve
deeper and connect the learned subjects to ad-
vanced topics such as synthesis.

Live Sequence Charts and
Scenario-Based Programming
LSC is a visual programming language for reactive
system development that was originally introduced
by Damm and Harel.1 It is supported by the Play-
Engine2 development environment, which we used
in the course, and the later tool, PlayGo,28 which is
a much more mature environment. PlayGo is one
result of an extensive effort toward making LSC
and behavioral programming publicly available
and accessible. It can be downloaded for free, to-
gether with tutorials, demos, and a language refer-
ence, at http://wiki.weizmann.ac.il/playgo.

Scenario-Based Programming
LSC introduces a new paradigm called scenario-
based programming, the main abstraction being a
scenario that describes a series of actions consti-
tuting a certain functionality of the system and
that can include possible, necessary, or forbidden
actions. For example, cash withdrawal is a basic
functionality of an ATM, so a scenario that de-
scribes system behavior in cash withdrawal will de-
tail interactions between the person withdrawing
money and the system, and between internal parts
of the system. A scenario is implemented by a live
sequence chart (hereafter we just use chart). Figure
1 shows an example of a chart for cruise control in
an automobile.

Syntactically, a chart is composed of two parts:
the prechart and the main chart. The prechart
is the upper dashed line hexagon in Figure 1; it’s
the chart’s activation condition. Once the chart
is activated, execution enters the main chart; this

www.computer.org/cise			 	� 63

is the lower rectangle in Figure 1, which contains
execution instructions. The vertical lines repre-
sent objects, and the horizontal arrows represent
interactions between them. Time flows from top
to bottom. Execution rules define how one chart
is activated and executed, and how multiple charts
are synchronized to run simultaneously. The en-
gine’s ability to interweave at runtime charts that
implement different aspects of the system into a
single flow enables (and encourages) an incremen-
tal development process, in which the system is
built by heaping separate scenarios. In addition to
LSC, scenario-based programming is also available
as an extension to Java, C++, Erlang, and Google’s
Blockly. The general approach has been called
behavioral programming.29

The Play-In Method
LSC is supplemented with a method for build-
ing the scenario-based specification over a real or
mockup GUI of the system via the play-in method,
which is implemented in the Play-Engine/PlayGo.
With play-in, the user specifies scenarios in a way
that’s close to how real interaction with the system
occurs. Figure 2 shows a snapshot of applying play-
in on a toy GUI of a cellular phone. The chart on
the left implements a scenario that describes what
the display and the speaker should do once the
user shuts the cellphone cover. It was programmed
into the system by actually interacting with the
GUI, that is, by playing with its components and
through this inserting the scenario’s logic. (Insert-
ing visual notations can also be done on the chart
and not only through the GUI. This is to support
programming of elements that don’t have a GUI
representation or that have operations that are less
convenient to do through the GUI.)

The Play-Out Method
LSC has an operational semantics that’s imple-
mented by the play-out method.30 which is also
included in the Play-Engine/PlayGo tools. Play-
out makes the specification directly executable/
simulatable, thus enabling the use of LSC as a
high-level programming language (other than
merely as a specification language).

The Course
The course that we describe here was given to a
standard class of 19 (10 girls, 9 boys) 12th-grade
high school students majoring in CS. Students’
previous experience included two introductory CS
courses given in Java (total of 180 hours), one in

the 10th grade and the other in the 11th grade; a
course on computer organization and assembly
language (90 hours), given in the 11th grade; and
a shortened version (45 hours instead of 90) of the
Computational Models course, which was given in
the first half of the 12th grade. This latter course
dealt mainly with deterministic finite automata
and didn’t include the concept of ND (we intended
to introduce it through LSC). Our course included
45 hours and replaced the second half of the Com-
putational Models course, meaning it was part of
the fifth unit. In parallel with the fifth unit, the
students learned software design (the fourth unit),
which mainly dealt with (relatively) advanced soft-
ware issues such as data structures, recursion, API,
and performance, presented in an object-based
approach.

Figure 1. A live sequence chart. This simple scenario is taken from an
implementation of cruise control. If and when the user presses (clicks)
the brake pedal, the cruise unit releases control of the accelerator and the
brake, and then turns itself off.

Release()

Click

Brake Cruise Accelerator

Release()

Off

Cover

Close

Set state
(time)

Sound (silent)

Display Speaker

17/5/01 12:34

SEND

PWR CLR

1 2 3

END

4 5 6

7 8 9

0 #

Display state<>off

Figure 2. The play-in method. The chart on the left implements a scenario
that describes what the display and the speaker should do once the user
shuts the cellphone cover.

EDUCATION

64	 � September/October 2017

Our course was developed and executed as a
pilot course on scenario-based programming with
LSC, under the auspices of the Israeli Ministry of
Education. It was mandatory for students in this
class, and its final grade was based on a matricu-
lation exam that included a section on LSC and
scenario-based programming, together with sec-
tions that referred to other CS units that students
learned during that year (computational models
and software design).

Main Objectives and Teaching Method
The main objective of the course was teaching
scenario-based programming as a second paradigm
via LSC. The course was divided into two parts.
The main purpose of the first was to cover basic
concepts and the relevant domains that the course
touched on (reactive systems, the software devel-
opment cycle, and so on). The teaching method
followed the zipper principle, meaning that theo-
retical lectures were interwoven with hands-on
exercise in the lab. The second part was project-
based. The students were divided into small groups,
and each group chose a project and programmed
it in LSC and implemented it on the Play-Engine.
During this part, we embedded some pauses in
which new, more advanced concepts were intro-
duced to the whole class.

Usually, the trigger for pausing the work to
discuss a topic was a real need that came from one
or more groups. This approach takes advantage
of a main characteristic of project-based learning:
students have a very strong motivation to learn the
concept, as it addresses a genuine need. This is true
not only for the specific group from which that
need arose but also for the other groups. Because
the other students are more or less at the same stage
of learning, they naturally feel that this informa-
tion is very relevant to them. Typically, immediately
after the topic is discussed, all the groups discuss it
in the context of their project.

The concepts taught this way weren’t always
totally new. For example, the concept of forbidden
scenarios was very briefly mentioned in one of the
lectures, with the purpose of delving into it during
later stages. One group project dealt with safety re-
quirements (for an elevator), which are commonly
about forbidding dangerous scenarios, and recalled
that LSC has such syntax. This opportunity was
used to discuss in more depth the conceptual is-
sue of forbidding a scenario, and the native support
this software concept has in LSC. This illustrates
the pedagogic effectiveness of a teaching method

that involves organizers given in advance, revisited
in a spiral manner in the context of project-based
learning.

Course Structure and Projects
The course included 15 lessons of three hours each.
Table 1 presents the content of each lesson.

The projects were carried out in five groups
of three to four students each. Each group was re-
quired to choose a project of reasonable complex-
ity and to implement it in LSC. We devoted to the
project 15 hours in class, and the students did some
more work at home (the homework that was given
required around one more weekly hour, but some
of the groups did more work than we required).

Choosing the projects. It was important for us that
the students choose a system by themselves, to
make them more engaged (indeed, in the post-
interviews, students mentioned this as a motivat-
ing factor). At this point in the course, the students
had a clear enough idea of what they were able to
do with LSC. Students’ projects included modeling
an elevator, a coffee machine, an ATM, and a cell-
phone, and developing a memory game (Simon).

The work process. After the students chose their
projects, we guided them to work according to
the following stages: define a set of requirements,
implement them, verify that the implementation
meets the requirements by simulating it, and de-
cide on the next steps accordingly (either fix the
implementation or start a new round). The ratio-
nale that underlies this process is of incremental
development, which also underlies recent software
engineering methodologies such as agile program-
ming. The crux is that LSC naturally supports in-
cremental development, as it lets you build a system
by adding separate scenarios that are combined by
the underlying engine into a single program.

Implementation. Since the final exam had to be
pen and paper, it was important that students also
practice drawing the charts by hand. Thus, they
were required to implement the project in the Play-
Engine but also to submit a handwritten version.

Submissions. Out of five groups, four submitted
their projects with quality that varied from satis-
factory to very good (especially if we consider the
limited time, 15 hours in total). One group didn’t
submit its project; this group consisted of four stu-
dents who showed low attendance. According to

www.computer.org/cise			 	� 65

the teacher, this was typical behavior of these stu-
dents and related to problems not connected to our
course.

Assessment
The purpose of the assessment was to evaluate
students’ understanding of LSC. It served two
very different purposes: grading the students, as
required in every high school course, and evaluat-
ing the course, to examine whether its goals were
achieved. Here, we deal with the former; the lat-
ter is elaborated on in Part 2. Grading was based
on internal midterm and final exams, and on a
matriculation exam that included a part written
especially for this class. Because the matriculation
exam in the context of which the course was given
(the fifth unit) is carried out on paper, we built

internal exams in the same form. Thus, and as
typically happens, the assessment method deter-
mined, in a sort of reverse fashion, many aspects
of the course. First, we had to give considerable
weight during class to actually drawing the charts
by hand. While this might be a nonissue in tex-
tual languages, it becomes an issue when teaching
visual languages that have rich graphical nota-
tions. For example, some students have difficul-
ties making accurate drawings; drawing can be
time-consuming, especially if different colors are
used, or if mistakes are made and the chart needs
to be redrawn. To overcome this, we developed
with the students a sort of a relaxed version of the
visual language. Fortunately, the LSC notations
that use colors have other identifying marks. For
example, LSC includes conditions, which come in

Table 1. Course structure.

Lesson Subject Hours Concepts Details

1 Introduction 3 Visual languages, reactive
systems, static vs. dynamic
behavior

Rules system as a way for describing
legal behaviors; visual representations
and formalisms (for example, London’s
Underground map); reactive systems and the
difficulties in modeling dynamic behavior
(vs. modeling static relationships)

2 Introduction to LSC and scenario-
based programming

3 LSC basics: pre-chart/main
chart, play-in/out, lifelines,
messages

Introduction to LSC and the Play-Engine;
exercise: students program a simple scenario
using play-in and run it using play-out

3 Execution engine, and
simultaneous execution of
multiple scenarios

3 Play-out, monitored vs. executed
events, concurrent execution

Theoretical explanation and demonstration of
simultaneous execution, followed by practical
experience in the lab

4 System specification and the
system model

3 The software development cycle,
specification, requirements

Using requirements to specify a simple cellphone;
implementing the requirements as LSCs

5 Partial order 3 Partial order, synchronization,
unification, nondeterminism

Different orders within a chart and between
charts; unification rules, synchronization
of several charts; using unification rules to
synchronize LSCs

6 Conditions and assertions 3 Hot and cold conditions Conditional execution, assertion vs. graceful
abort

7 Small project 3 Variables, loops, subcharts Pairs work in the lab; build a small system from
a set of requirements to introduce students to
additional constructs such as loops, variables,
and subcharts

8 Symbolic elements 3 Symbolic elements, bindings,
existential vs. universal semantics

Using symbolic elements to define general
behavior

9 Midterm exam 3

10-14 Final projects 15 Forbidden elements and scenarios

Exams Assessment 6 Final exam, matriculation exam

EDUCATION

66	 � September/October 2017

two flavors: cold and hot. Cold conditions are de-
noted by blue dashed lines, while hot ones use red
solid lines, so they can be distinguished even in
black and white.

During the exams, students were required to
create, modify, and comprehend LSC systems.
For example, one of the exam questions dealt with
the specification and implementation of a cell-
phone. The question included several charts, each
implementing a scenario that captures a system
requirement, and students had to answer various
questions regarding the execution of these charts,
which involved, among other things, concur-
rency and ND; to modify one of the charts to fix
a bug; and given a new requirement, add a chart
implementing it (https://weizmann.box.com
/LSCsExamQuestion).

Table 2 presents average grade, standard devia-
tion, and number of participants for each test.

The rationale that guided the design of the ex-
ams was to include questions that measure differ-
ent levels of understanding, as defined by Bloom’s
taxonomy (in its revised form31). However, we ad-
opted a more relaxed interpretation of the taxono-
my, and instead of using six categories, we grouped
the categories into three metacategories: one that
includes categories 1 and 2 (Remembering and
Understanding), one that includes categories 3 and
4 (Applying and Analyzing), and one that refers to
categories 5 and 6 (Evaluating and Creating). The
rationale is that Bloom’s categories can overlap,
and the classification of operations into categories
can be ambiguous.32

Concentrating on three metacategories allows
us to consider the categories in a somewhat broader
form, which makes the classification less ambigu-
ous. Table 3 describes, per metacategory and exam,
the number of questions that were included and
the average grade for these questions.

The results of the pilot course indicate that high
school students can reach a significant under-

standing of LSC, and through working with the
language, deal with high-level programming and
nondeterminism. This is further discussed in Part 2
of this article, which will appear in the next issue.

Acknowledgments
We thank Avi Cohen, Ronit Ben-Bassat Levy, Nir Ei-
tan, and Zehava Levin for their help in conducting this
research, which was partially supported by an Advanced
Research Grant to DH from the European Research
Council (ERC) under the European Community’s FP7
Programme and by the Israel Science Foundation. The
work of the first author was supported by a grant from
the Azrieli Foundation.

References
	 1.	 W. Damm and D. Harel, “LSCs: Breathing Life

into Message Sequence Charts,” Formal Methods
System Design, vol. 19, no. 1, 2001, pp. 45–80.

	 2.	 D. Harel and R. Marelly, Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine, Springer-Verlag, 2003.

	 3.	 J. Gal-Ezer et al., “A High School Program in
Computer Science,” Computer, vol. 28, no. 10,
1995, pp. 73–80.

	 4.	 T. Bell, P. Andreae, and L. Lambert, “Computer
Science in New Zealand High Schools,” Proc. 12th
Australasian Conf. Computing Education, 2010,
pp. 15–22.

	 5.	 M.E. Caspersen and P. Nowack, “Computational
Thinking and Practice: A Generic Approach to Com-
puting in Danish High Schools,” Proc. 15th Austral-
asian Computing Education Conf., 2013, pp. 137–143.

	 6.	 D. Seehorn et al., “CSTA K–12 Computer Science
Standards: Revised 2016,” CSTA/ACM 2011;
https://www.csteachers.org/resource/resmgr/Docs
/Standards/2016StandardsRevision/INTERIM
_StandardsFINAL_07222.pdf .

	 7.	 D.P. Ausubel, “Cognitive Structure and the Facili-
tation of Meaningful Verbal Learning,” J. Teacher
Education, vol. 14, no. 2, 1963, pp. 217–222.

	 8.	 	J.S. Bruner, The Process of Education, Harvard
Univ. Press, 1960.

Table 3. �The number of questions and the results per metacategory
and exam.

Exam

Bloom 1-2 Bloom 3-4 Bloom 5-6

No.
questions

Success
(%)

No.
questions

Success
(%)

No.
questions

Success
(%)

Midterm 1 100 2 75 1 93

Final 2 92 3 84 2 83

Matriculation 2 95 3 85 2 84

Table 2. Students’ grades.

Exam Success (%) Std N

Midterm 89 10 17

Final 92 12 19

Matriculation 90 6 19

www.computer.org/cise			 	� 67

	 9.	 A. Schwill, “Fundamental Ideas of Computer Sci-
ence,” Bull. European Assoc. Theoretical Computer
Science, vol. 53, 1994, pp. 274–295.

	10.	 C. Corder, Teaching Hard, Teaching Soft: A Struc-
tured Approach to Planning and Running Effective
Training Courses, Gower, 1990.

	11.	 D. Wood, J.S. Bruner, and G. Ross, “The Role of
Tutoring in Problem Solving,” J. Child Psychology
and Psychiatry, vol. 17, no. 2, 1976, pp. 89–100.

	12.	 L.S. Vygotsky and M. Cole, Mind in Society: The
Development of Higher Psychological Processes,
Harvard Univ. Press, 1978.

	13.	 I. Harel and S. Papert, eds., Constructionism,
Ablex, 1991.

	14.	 P.C. Blumenfeld et al., “Motivating Project-Based
Learning: Sustaining the Doing, Supporting the
Learning,” Educational Psychologist, vol. 26,
nos. 3–4, 1991, pp. 369–398.

	15.	 B. Haberman and Z. Scherz, “Evolving Boxes
as Flexible Tools for Teaching High-School
Students Declarative and Procedural Aspects of
Logic Programming,” From Computer Literacy
to Informatics Fundamentals, Springer, 2005,
pp. 156–165.

	16.	 M. Petre, “Shifts in Reasoning about Software and
Hardware Systems: Must Operational Models Under-
pin Declarative Ones?” Proc. 3rd Workshop Psychology
of Programming Interest Group, 1991; www.ppig.org
/library/paper/shifts-reasoning-about-software-and
-hardware-systems-must-operational-models-underpin.

	17.	 J. Taylor, “Analysing Novices Analysing Prolog:
What Stories Do Novices Tell Themselves about
Prolog?” Instructional Science, vol. 19, no. 4–5,
1990, pp. 283–309.

	18.	 G. Alexandron et al., “Scenario-based Program-
ming: Reducing the Cognitive Load, Fostering
Abstract Thinking,” Proc. 36th Int’ l Conf. Software
Eng., 2014, pp. 311–320.

	19.	 G. Alexandron et al., “On Teaching Program-
ming with Nondeterminism,” Proc. 8th Workshop
Primary and Secondary Computing Education, 2013,
pp. 71–74.

	20.	 M. Armoni and M. Ben-Ari, “The Concept of
Nondeterminism: Its Development and Implica-
tions for Teaching,” SIGCSE Bull., vol. 41, no. 2,
2009, pp. 141–160.

	21.	 J. Gal-Ezer and D. Harel, “Curriculum and
Course Syllabi for a High-School Program in Com-
puter Science,” Computer Science Education, vol. 9,
1999, pp. 114–147.

	22.	 M. Armoni, N. Lewenstein, and M. Ben-Ari,
“Teaching Students to Think Nondeterministi-
cally,” SIGCSE Bull., vol. 40, no. 1, 2008, pp. 4–8.

	23.	 M. Armoni, “On Teaching Abstraction in CS to
Novices,” J. Computers in Mathematics and Science
Teaching, vol. 32, no. 3, 2013, pp. 265–284.

	24.	P. Hubwieser, M. Armoni, and M.N. Giannakos,
“How to Implement Rigorous Computer Science
Education in K-12 Schools? Some Answers and
Many Questions,” ACM Trans. Computing Educa-
tion, vol. 15, no. 2, 2015, article no. 5.

	25.	 P. Hubwieser et al., “Perspectives and Visions
of Computer Science Education in Primary and
Secondary (K-12) Schools,” ACM Trans. Computing
Education, vol. 14, no. 2, 2014, article no. 7.

	26.	G. Alexandron, M. Armoni, and D. Harel, “Pro-
gramming with the User in Mind,” Proc. Psychology
of Programming Interest Group Annual Conf., 2011;
www.ppig.org/papers/23/20%20Alexandron.pdf.

	27.	 D. Harel and A. Pnueli, “On the Development of
Reactive Systems,” Logics and Models of Concurrent
Systems. Springer-Verlag, 1985, pp. 477–498.

	28.	D. Harel et al., “PlayGo: Towards a Comprehen-
sive Tool for Scenario Based Programming,” Proc.
IEEE/ACM Int’ l Conf. Automated Software Eng.,
2010, pp. 359–360.

	29.	 D. Harel, A. Marron, and G. Weiss, “Behavioral
Programming,” Comm. ACM, vol. 55, no. 7, 2012,
pp. 90–100.

	30.	D. Harel and R. Marelly, “Specifying and Execut-
ing Behavioral Requirements: The Play-In/Playout
Approach,” Software and Systems Modeling, vol. 2,
no. 2, 2003, pp. 82–107.

	31.	 L.W. Anderson, D.R. Krathwohl, and B.S. Bloom,
A Taxonomy for Learning, Teaching, and Assessing:
A Revision of Bloom’s Taxonomy of Educational
Objectives, Longman, 2001.

	32.	U. Fuller et al., “Developing a Computer Science-
Specific Learning Taxonomy,” SIGCSE Bull.,
vol. 39, no. 4, 2007, pp. 152–170.

Giora Alexandron is a principal data scientist at the
Center for Educational Technology. Contact him at
Gioraa@cet.ac.il.

Michal Armoni is a senior scientist at the Weizmann
Institute of Science. Contact her at michal.armoni@
weizmann.ac.il.

Michal Gordon is a senior lecturer at Holon Institute of
Technology. Contact her at michalgor@hit.ac.il.

David Harel is a professor at the Weizmann Institute
of Science and vice president of the Israel Academy of
Sciences and Humanities. Contact him at dharel@
weizmann.ac.il.

